Class Confidence Weighted kNN Algorithms for Imbalanced Data Sets

نویسندگان

  • Wei Liu
  • Sanjay Chawla
چکیده

In this paper, a novel k -nearest neighbors (kNN) weighting strategy is proposed for handling the problem of class imbalance. When dealing with highly imbalanced data, a salient drawback of existing kNN algorithms is that the class with more frequent samples tends to dominate the neighborhood of a test instance in spite of distance measurements, which leads to suboptimal classification performance on the minority class. To solve this problem, we propose CCW (class confidence weights) that uses the probability of attribute values given class labels to weight prototypes in kNN. The main advantage of CCW is that it is able to correct the inherent bias to majority class in existing kNN algorithms on any distance measurement. Theoretical analysis and comprehensive experiments confirm our claims.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

An Improved KNN Algorithm for Imbalanced Data Based on Local Mean

KNN algorithm is a simple, effective, non-parametric classification, and has been widely used in text classification, pattern recognition, image and spatial classification. Research on improvements about KNN algorithm has broad application prospects and important scientific significance. Based on analysis about classic KNN and its improved algorithms, we find its over-reliance on the choice of ...

متن کامل

Confidence-Weighted Bipartite Ranking

Bipartite ranking is a fundamental machine learning and data mining problem. It commonly concerns the maximization of the AUC metric. Recently, a number of studies have proposed online bipartite ranking algorithms to learn from massive streams of class-imbalanced data. These methods suggest both linear and kernel-based bipartite ranking algorithms based on first and second-order online learning...

متن کامل

A Distance-Based Over-Sampling Method for Learning from Imbalanced Data Sets

Many real-world domains present the problem of imbalanced data sets, where examples of one classes significantly outnumber examples of other classes. This makes learning difficult, as learning algorithms based on optimizing accuracy over all training examples will tend to classify all examples as belonging to the majority class. We introduce a method to deal with this problem by means of creati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011